Тема 14. Тригонометрия

Часть 3

Содержание

- 117. Обратные тригонометрические функции.
- 118. Тригонометрические уравнения. Частные случаи.
- 119. Простые тригонометрические уравнения.
- 120. Простые уравнения с квадратами и модулями.
- 121. Уравнения, сводящиеся к квадратным.
- 122. Разложение на множители и другие несложные уравнения.
- 123. Простые уравнения с «некрасивыми» ответами.
- 124. Простые уравнения. Итоговый.

117. ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ.

Изучение этой темы потребует от Вас тщательного изучения теории.

Функция, обратная синусу.

Функцию, обратную функции $y = \sin x$, называют *арксинусом* и обозначают $y = \arcsin x$.

Арксинусом числа a, $a \in [-1;1]$ называют угол, принадлежащий отрезку $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, синус которого равен

числу a; его обозначают arcsin a.

Таким образом, $\arcsin a$ есть угол, удовлетворяющий условиям:

$$\sin(\arcsin a) = a$$
, $|a| \le 1$; $-\frac{\pi}{2} \le \arcsin a \le \frac{\pi}{2}$.

Функция $y = \arcsin x$ определена на отрезке [-1; 1], областью ее значений является отрезок $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. На отрезке [-1; 1] функция $y = \arcsin x$ непре-

рывна и монотонно возрастает от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$. Наибольшее значение

функция принимает при x = 1: $\arcsin 1 = \frac{\pi}{2}$, а наименьшее – при x = -1:

 $\arcsin(-1) = -\frac{\pi}{2}$. При x = 0 функция равна нулю.

Отметим, что $\arcsin(-x) = -\arcsin x$. График функции $y = \arcsin x$ изображен на рисунке.

Функция, обратная косинусу.

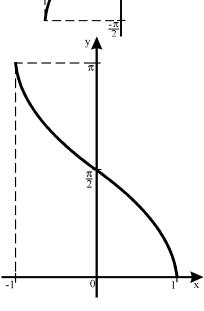
Функцию, обратную функции $y = \cos x$, называют *арккосинусом* и обозначают $y = \arccos x$. Арккосинусом числа a, $|a| \le 1$, называют угол, принадлежащий отрезку $[0; \pi]$, косинус которого равен числу a; его обозначают a агссов a. Таким образом, a агссов a есть угол, удовлетворяющий условиям:

$$\cos(\arccos a) = a$$
, $|a| \le 1$; $0 \le \arccos a \le \pi$.

Отметим, что $arccos(-a) = \pi - arccos a$.

Функция у = arccos x определена на отрезке [-1; 1], областью ее значений является отрезок $[0; \pi]$. На отрезке [-1; 1] функция у = arccosx непрерывна и монотонно убывает от π до 0. На концах отрезка она достигает экстремальных значений: $\operatorname{arccos}(-1) = \pi$; $\operatorname{arccosl} = 0$.

График функции $y = \arccos x$ показан на рисунке и он симметричен графику функции $y = \cos x$ относительно прямой y = x.



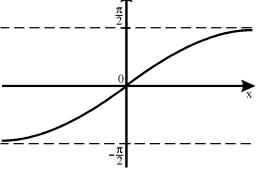
Функция, обратная тангенсу.

Функцию, обратную тангенсу, называют *арктангенсом* и обозначают $y = \operatorname{arctg} x$.

Арктангенсом числа \pmb{a} называют угол из промежутка $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$,

тангенс которого равен a: tg(arctga) = a; $-\frac{\pi}{2} < arctga < \frac{\pi}{2}$.

Любому числу x всегда соответствует единственное значение функции y = arctgx.



Очевидно: $D(arctgx) = (-\infty; +\infty)$, $E(arctgx) = \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Функция y = arctg x является возрастающей.

Отметим, что arctg(-x) = - arctg x.

График функции $y = arctg\ x$ проходит через начало координат и изображен на рисунке.

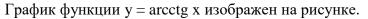
Функция, обратная котангенсу.

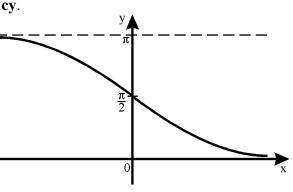
Функцию, обратную котангенсу, называют *арккотангенсом* и обозначают $y = arcctg\ x$.

Арккотангенсом числа \boldsymbol{a} называют угол, принадлежащий интервалу $(0;\pi)$, котангенс которого равен \boldsymbol{a} : $\operatorname{ctg}(\operatorname{arcctga}) = a$; $0 < \operatorname{arcctga} < \pi$. Для арккотангенса $\operatorname{D}(\operatorname{arcctgx}) = (-\infty; +\infty)$, $\operatorname{E}(\operatorname{arcctgx}) = (0;\pi)$.

Арккотангенс является убывающей функцией. Отметим, что $\operatorname{arcctg}(-x) = \pi - \operatorname{arcctgx}$. График функции $y = \operatorname{arcctg}(x) + \operatorname{arcctg}(x)$

секает ось Ох, так как y > 0 при всех $x \in R$; $y = arcctg0 = \frac{\pi}{2}$.





$\alpha = \arcsin a$	$\alpha = \arccos a$	α =arctga	α =arcctga
1) $\sin \alpha = a$,	1) $\cos \alpha = a$,	1) $tg\alpha = a$,	1) $\operatorname{ctg} \alpha = a$,
2) $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$	2) $0 \le \alpha \le \pi$	2) $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$	2) $0 < \alpha < \pi$

Верны следующие равенства:

$$\arcsin(-a) = -\arcsin a, \quad |a| \le 1; \qquad \arccos(-a) = \pi - \arccos a, \quad |a| \le 1;$$

$$\arcsin a + \arccos a = \frac{\pi}{2}, \quad |a| \le 1; \qquad \arctan(-a) = -\arctan a,$$

$$\arctan(-a) = \pi - \arctan a, \qquad \arctan(-a) = \pi - \arctan a,$$

$$\arctan(-a) = \pi - \arctan a, \qquad \arctan(-a) = \pi - \arctan a,$$

$$\arctan(-a) = \pi - \arctan a, \qquad \arctan(-a) = \pi - \arctan a,$$

$$\arctan(-a) = \pi - \arctan a, \qquad \arctan(-a) = \pi - \arctan a,$$

$$\arctan(-a) = \pi - \arctan a, \qquad \arctan(-a) = \pi - \arctan a,$$

$$\arctan(-a) = \pi - \arctan a,$$

Думаю что, прочитав теорию, Вы находитесь в лёгком шоке. Разберём примеры.

ПРИМЕР. Вычислить $\arccos \frac{\sqrt{2}}{2}$.

Вычисляя арккосинує табличный величины, надо вспомнить, косинує какого угла равен $\frac{\sqrt{2}}{2}$.

Очевидно, что это угол 45^{0} . Значит, $\arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$.

ПРИМЕР. Вычислить $\arcsin \frac{1}{2}$.

Вспоминаем, что $\sin \frac{\pi}{6} = \frac{1}{2}$. Значит, $\arcsin \frac{1}{2} = \frac{\pi}{6}$.

ПРИМЕР. Вычислить $arctg \sqrt{3}$.

Вспоминаем, что $tg\frac{\pi}{3} = \sqrt{3}$. Значит, $arctg\sqrt{3} = \frac{\pi}{3}$.

ПРИМЕР. Вычислить $\arctan \sqrt{3}$.

Вспоминаем, что $\operatorname{ctg} \frac{\pi}{6} = \sqrt{3}$. Значит, $\operatorname{arctg} \sqrt{3} = \frac{\pi}{6}$.

Теперь рассмотрим примеры, в которых придётся использовать знания из теории.

ПРИМЕР. Вычислить $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$.

Учтём, что
$$\arcsin\left(-a\right) = -\arcsin a$$
, $\left|a\right| \le 1$; $\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\arcsin\left(\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$.

ПРИМЕР. Вычислить $\arccos\left(-\frac{\sqrt{3}}{2}\right)$.

Учтём, что $arccos(-a) = \pi - arccos a$, $|a| \le 1$; $arccos(-\frac{\sqrt{3}}{2}) = \pi - arccos(\frac{\sqrt{3}}{2}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

ПРИМЕР. Вычислить arctg(-1).

Учтём, что $\operatorname{arctg}(-a) = -\operatorname{arctga}$, $\operatorname{arctg}(-1) = -\operatorname{arctgl} = -\frac{\pi}{4}$.

ПРИМЕР. Вычислить $\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right)$.

Учтём, что $\operatorname{arcctg}(-a) = \pi - \operatorname{arcctga}$, $\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right) = \pi - \operatorname{arcctg}\left(\frac{\sqrt{3}}{3}\right) = \pi - \frac{\pi}{3} = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$

ПРИМЕР. Вычислить $\cos(8 \cdot \arctan - \arccos(-0.5))$.

Так как $\operatorname{arctgl} = \frac{\pi}{4}$, $\operatorname{arccos}(-0.5) = \frac{2\pi}{2}$, то

 $\cos(8 \cdot \arctan(-0.5)) = \cos(8 \cdot \frac{\pi}{4} - \frac{2\pi}{3}) = \cos(2\pi - \frac{2\pi}{3}) = \cos\frac{4\pi}{3} = -0.5$. Other: -0.5.

ПРИМЕР. Вычислить $\cos \left(240 \cdot \arccos \frac{\sqrt{3}}{2} \right)$.

Поскольку $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$, то $\cos \left(240 \cdot \arccos \frac{\sqrt{3}}{2} \right) = \cos \left(240 \cdot \frac{\pi}{6} \right) = \cos \frac{240\pi}{6} = \cos 40\pi = 1$. Ответ: 1.

ПРИМЕР. Вычислить $\cos\left(\arcsin\left(-\frac{\sqrt{3}}{2}\right)\right)$.

 $\cos\left(\arcsin\left(-\frac{\sqrt{3}}{2}\right)\right) = \cos\left(-\arcsin\frac{\sqrt{3}}{2}\right) = \cos\left(\arcsin\frac{\sqrt{3}}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}.$ Other: 1/2.

ПРИМЕР. Вычислить $\sin\left(2\arccos\frac{3}{5}\right)$.

Обозначим

 $\arccos \frac{3}{5} = x$,

тогда

 $\cos x = \frac{3}{5}, \quad 0 < x < \frac{\pi}{2},$

 $\sin 2x = 2 \cdot \sin x \cdot \cos x = 2 \cdot \sqrt{1 - \left(\frac{3}{5}\right)^2 \cdot \frac{3}{5}} = 2 \cdot \frac{4}{5} \cdot \frac{3}{5} = \frac{24}{25}$

Мы учли, что $\sin x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$ Ответ: 24/25.

ПРИМЕР. Вычислить $\cos\left(2 \cdot \arcsin\frac{2}{3}\right)$.

Обозначим $\arcsin \frac{2}{3} = x$, тогда $\sin x = \frac{2}{3}$, $0 < x < \frac{\pi}{2}$,

Используя формулу для косинуса двойного угла $\cos 2\alpha = 1 - 2\sin^2 \alpha$, получаем:

 $\cos\left(2\arcsin\frac{2}{3}\right) = 1 - 2\cdot\left(\frac{2}{3}\right)^2 = \frac{1}{9}$. Other: 1/9.

ПРИМЕР. Вычислить $\operatorname{ctg}\left(\operatorname{arccos}\left(-\frac{1}{3}\right)\right)$.

Так как $arccos(-a) = \pi - arccosa$, то, используя формулы приведения, определения котангенса и арксинуса, зависимость между синусом и косинусом, находим:

$$ctg\left(\arccos\left(-\frac{1}{3}\right)\right) = ctg\left(\pi - \arccos\frac{1}{3}\right) = -ctg\left(\arccos\frac{1}{3}\right) = -\frac{\cos\left(\arccos\frac{1}{3}\right)}{\sin\left(\arccos\frac{1}{3}\right)} = -\frac{\frac{1}{3}}{\sqrt{1-\frac{1}{9}}} = -\frac{\frac{1}{3}}{\frac{\sqrt{8}}{3}} = -\frac{1}{\sqrt{8}} = -\frac{1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4}$$

Мы учли, что $\arccos \frac{1}{3} = x$, тогда $\cos x = \frac{1}{3}$, $0 < x < \frac{\pi}{2}$, a $\sin x = \frac{2\sqrt{2}}{3}$. Ответ: $-\frac{\sqrt{2}}{4}$

ПРИМЕР. Вычислить $tg\left(\arcsin\frac{2}{3}\right)$.

Обозначаем $\arcsin\frac{2}{3}=\alpha$. Эта запись означает, что $\sin\alpha=\frac{2}{3},\quad 0<\alpha\leq\frac{\pi}{2}$.

Найдем значение $\cos\alpha$. $\cos\alpha = \sqrt{1-\sin^2\alpha} = \sqrt{1-\left(\frac{2}{3}\right)^2} = \frac{\sqrt{5}}{3}$.

Так как в первой четверти косинус положителен, то $\cos \alpha = \frac{\sqrt{5}}{3}$.

Отсюда находим: $tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{2}{3} : \frac{\sqrt{5}}{3} = \frac{2}{\sqrt{5}}$. Следовательно, $tg\left(\arcsin\frac{2}{3}\right) = tg\alpha = \frac{2\sqrt{5}}{5}$. Ответ: $\frac{2\sqrt{5}}{5}$.

ПРИМЕР. Найти значение угла (в градусах) $\arcsin(\cos 500^{\circ})$.

Используя периодичность функции косинус, формулы приведения и формулу $\arcsin(-a) = -\arcsin a, |a| \le 1$, находим:

$$\arcsin\left(\cos 500^{\circ}\right) = \arcsin\left[\cos\left(360^{\circ} + 140^{\circ}\right)\right] = \arcsin\left(\cos 140^{\circ}\right) = \arcsin\left[\cos\left(90^{\circ} + 50^{\circ}\right)\right] = \arcsin\left(-\sin 50^{\circ}\right) = -\arcsin\left(\sin 50^{\circ}\right) = -50^{\circ}.$$

Искомый угол равен -50° . Ответ: -50° .

ПРИМЕР. Вычислить $\arcsin\left(\cos\frac{33}{5}\pi\right)$.

Так как $\cos \frac{33}{5}\pi = \cos \left(6\pi + \frac{3}{5}\pi\right) = \cos \frac{3}{5}\pi = \sin \left(\frac{\pi}{2} - \frac{3}{5}\pi\right) = \sin \left(-\frac{\pi}{10}\right) = -\sin \frac{\pi}{10}$

то, использовав равенство arcsin(-a) = -arcsin a, получим:

$$\arcsin\left(\cos\frac{33}{5}\pi\right) = \arcsin\left[\sin\left(-\frac{\pi}{10}\right)\right] = \arcsin\left[-\sin\left(\frac{\pi}{10}\right)\right] = -\arcsin\left(\sin\frac{\pi}{10}\right) = -\frac{\pi}{10}.$$

Следовательно, $\arcsin\left(\cos\frac{33}{5}\pi\right) = -\frac{\pi}{10}$. Ответ: $-\frac{\pi}{10}$

ПРИМЕР. Найти сумму корней уравнения $\arcsin\left(2x^2 + x - \frac{1}{2}\right) = \frac{\pi}{6}$.

В данном случае $-1 \le 2x^2 + x - \frac{1}{2} \le 1$. Уравнение равносильно уравнению:

 $2x^2 + x - \frac{1}{2} = \sin \frac{\pi}{6}$, $2x^2 + x - \frac{1}{2} = \frac{1}{2}$, $2x^2 + x - 1 = 0$. Корнями квадратного уравнения являются числа:

 $x_1 = -1$, $x_2 = \frac{1}{2}$. Сумма корней исходного уравнения равна -0.5. Ответ: -0.5.

TECT 1.

1. Вычислите:
$$\arcsin\left(-\frac{1}{\sqrt{2}}\right) - \arctan\left(-\frac{1}{\sqrt{3}}\right) + \arccos\left(-\frac{1}{2}\right) + \arctan\left(-\frac{1}{2}\right) + \arctan\left(-\frac{1}{2}\right) = 1$$
 (4) 2π

2. Вычислите: $arctg(tg130^{\circ})$. 1) -130⁰. $2) -50^{\circ}$.

3. Значение угла $\arcsin(\cos 490^\circ)$ (в градусах) равно: 1) 130° . 2) 40° . 3) -40° . 4) 490° . 4. Вычислите $\arcsin(\sin(-572^\circ))$. 1) 16° . 2) 32° . 3) 20° . 4) 15° .

5. Укажите в градусах значение угла $\arcsin(\cos(-315^{\circ}))$. 1) 45 $^{\circ}$. 2) -45 $^{\circ}$. 3) 135 $^{\circ}$. 4) -135° .

6. Вычислите: $\operatorname{tg}\left(\operatorname{arctg}\left(-\frac{1}{\sqrt{3}}\right) + \frac{\pi}{6}\right)$. 1) -1. 2) 0. 3) 1. 4) не существует.

7. Решите выражение: $\sin\left(200 \cdot \arcsin\left(-\frac{1}{2}\right)\right)$. 1) $\frac{\sqrt{3}}{2}$. 2) $-\frac{\sqrt{3}}{2}$. 3) 0,5. 4) -0,5.

8. Сумма корней (или корень, если он один) уравнения равна: $\arcsin(2x^2 + 3x - 8) = \frac{\pi}{2}$.

1) -1,5.

9. Значение у равно $y = \sin\left(\arccos\frac{2}{3}\right)$. 1) $\frac{\sqrt{5}}{3}$. 2) $\frac{\sqrt{2}}{3}$. 3) $\frac{\sqrt{2}}{2}$. 4) 0,5.

10. Значение у равно $y = tg \left(arccos \left(-\frac{3}{5} \right) \right)$. 1) -4/5. 2) -4/3. 3) 7/5. 4) 6.

11. Решите выражение: $\sin\left(\operatorname{arcctg}\left(-\sqrt{8}\right)\right)$. 1) -1/3. 2) 1/3. 3) $\frac{\sqrt{8}}{2}$. 4) $\frac{\sqrt{2}}{2}$.

12. Решите выражение: $\sin\left(2\arccos\frac{3}{5}\right)$. 1) 24/25. 2) 1/5. 3) 2/5. 4) 21/25.

13. Вычислите: $\sin(2.5\pi + \arctan(0.75))$. 1) -3/4. 2) 4/5. 3) 14/15 4) 120/119.

14. Решите выражение: $tg\left(2 \cdot \arcsin\left(-\frac{2}{3}\right) + 3\pi\right)$. 1) $\frac{\sqrt{5}}{20}$. 2) $-\frac{\sqrt{5}}{25}$. 3) -8,944. 4) $-4\sqrt{5}$.

15. Решите выражение: $\sin(6 \cdot \arctan \sqrt{3} - \arccos 0.6)$. 1) -3/5. 2) 3/5. 3) 4/5. 4) -4/5. 2) 3/4. 3) 4/3. 4) -4/3. 16. Решите выражение: $ctg(4 \cdot arccos0 + 2 \cdot arctg2)$. 1) -3/4.

17. Значение равно $\sin\left(6 \cdot \operatorname{arcctg}\left(-\sqrt{3}\right) + 4 \cdot \operatorname{arctg}\sqrt{5}\right)$. 1) $-\frac{4\sqrt{5}}{9}$. 2) 1/9. 3) -1/9. 4) $\frac{4\sqrt{5}}{9}$.

18. Вычислите значение выражения $\sin\left(2\arctan\frac{4}{3}\right) + \cos\left(\arctan\frac{3}{4}\right)$. 1) 23/15. 2) 37/25. 3) 44/25. 4) 2,5.

118. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЧАСТНЫЕ СЛУЧАИ.

Решение тригонометрического уравнения заключается в нахождении неизвестных углов, удовлетворяющих условию уравнения.

ПРИМЕР. Решим уравнение $\sin x = 1$.

Кроме угла $90^0\,$ этому условию удовлетворяют углы $450^0,\,810^0...$, т.е. углы, большие или меньшие угла $90^0\,$ на $360^0,\,720^0\,$ и т.д. Поэтому, решением уравнения в радианах являются углы:

$$\frac{\pi}{2}; \frac{\pi}{2} + 2 \cdot \pi = \frac{5\pi}{2}; \frac{\pi}{2} + 4 \cdot \pi = \frac{9\pi}{2}; \frac{\pi}{2} - 2 \cdot \pi = -\frac{3\pi}{2}; \frac{\pi}{2} - 4 \cdot \pi = -\frac{7\pi}{2} \dots$$

Т.е. корнями уравнения являются угол $\frac{\pi}{2}$ и углы, отличающиеся от него на $2 \cdot \pi \cdot n$, где n – целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x = \frac{\pi}{2} + 2 \cdot \pi \cdot n$; $n \in Z$.

ПРИМЕР. Решим уравнение $\sin x = -1$.

Этому условию удовлетворяют углы

$$-\frac{\pi}{2}; -\frac{\pi}{2} + 2 \cdot \pi = \frac{3\pi}{2}; -\frac{\pi}{2} + 4 \cdot \pi = \frac{7\pi}{2}; -\frac{\pi}{2} - 2 \cdot \pi = -\frac{5\pi}{2}; -\frac{\pi}{2} - 4 \cdot \pi = -\frac{9\pi}{2}....$$

Т.е. корнями уравнения являются угол $-\frac{\pi}{2}$ и углы, отличающиеся от него на $2\cdot\pi\cdot n$, где n – целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x=-\frac{\pi}{2}+2\cdot\pi\cdot n; n\in Z$.

ПРИМЕР. Решим уравнение $\sin x = 0$.

Этому условию удовлетворяют углы $0;0+\pi=\pi;0+2\cdot\pi=2\cdot\pi;0-2\cdot\pi=-2\cdot\pi;0-4\cdot\pi=-4\cdot\pi...$

Т.е. корнями уравнения являются угол 0 и углы, отличающиеся от него на $\pi \cdot n$, где n — целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x = \pi \cdot n$; $n \in Z$.

ПРИМЕР. Решим уравнение $\cos x = 1$.

Этому условию удовлетворяют углы $0; 0+2 \cdot \pi=2 \cdot \pi; 0+4 \cdot \pi=4 \cdot \pi; 0-2 \cdot \pi=-2 \cdot \pi; 0-4 \cdot \pi=-4 \cdot \pi...$

Т.е. корнями уравнения являются угол 0 и углы, отличающиеся от него на $2 \cdot \pi \cdot n$, где n- целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x=2 \cdot \pi \cdot n$; $n \in Z$.

ПРИМЕР. Решим уравнение $\cos x = -1$.

Этому условию удовлетворяют углы π ; $\pi + 2 \cdot \pi = 3 \cdot \pi$; $\pi + 4 \cdot \pi = 5 \cdot \pi$; $\pi - 2 \cdot \pi = -\pi$; $\pi - 4 \cdot \pi = -3 \cdot \pi$

Т.е. корнями уравнения являются угол π и углы, отличающиеся от него на $2 \cdot \pi \cdot n$, где n- целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x = \pi + 2 \cdot \pi \cdot n$; $n \in Z$.

ПРИМЕР. Решим уравнение $\cos x = 0$.

Этому условию удовлетворяют углы
$$\frac{\pi}{2}; \frac{\pi}{2} + \pi = \frac{3\pi}{2}; \frac{\pi}{2} + 2 \cdot \pi = \frac{5\pi}{2}; \frac{\pi}{2} - \pi = -\frac{\pi}{2}; \frac{\pi}{2} - 2 \cdot \pi = -\frac{3\pi}{2} \dots$$

Т.е. корнями уравнения являются угол $\frac{\pi}{2}$ и углы, отличающиеся от него на $\pi \cdot n$, где n- целое число (множество целых чисел обозначается Z). Чтобы не записывать в ответе бесконечное число корней, применяют сокращённую запись $x=\frac{\pi}{2}+\pi \cdot n; n\in Z$.

ПРИМЕР. Решим уравнение tgx = 0.

Очевидно, что это равенство справедливо, если $\sin x = 0$. Ответ: $x = \pi \cdot n$; $n \in \mathbb{Z}$.

ПРИМЕР. Решим уравнение ctgx = 0.

Очевидно, что это равенство справедливо, если $\cos x = 0$. Ответ: $x = \frac{\pi}{2} + \pi \cdot n; \, n \in Z$.

Мы рассмотрели частные случаи решения тригонометрических уравнений. Вам обязательно надо запомнить эти решения.

Усложним уравнения.

ПРИМЕР. Решим уравнение $\sin 2x = 1$.

$$2x = \frac{\pi}{2} + 2 \cdot \pi \cdot n; n \in \mathbb{Z}. \implies x = \frac{\pi}{4} + \pi \cdot n; n \in \mathbb{Z}$$

ПРИМЕР. Решим уравнение $\sin \frac{x}{3} = -1$.

$$\frac{x}{3} = -\frac{\pi}{2} + 2 \cdot \pi \cdot n; n \in \mathbb{Z} \implies x = -\frac{3\pi}{2} + 6 \cdot \pi \cdot n; n \in \mathbb{Z}$$

ПРИМЕР. Решим уравнение $\sin\left(x + \frac{\pi}{6}\right) = 0$.

$$x + \frac{\pi}{6} = \pi \cdot n; n \in Z. \Rightarrow x = -\frac{\pi}{6} + \pi \cdot n; n \in Z$$

ПРИМЕР. Решим уравнение $\cos\left(3x - \frac{\pi}{4}\right) = 1$.

$$3x - \frac{\pi}{4} = 2 \cdot \pi \cdot n; n \in \mathbb{Z}. \Rightarrow 3x = \frac{\pi}{4} + 2 \cdot \pi \cdot n; n \in \mathbb{Z} \Rightarrow x = \frac{\pi}{12} + \frac{2 \cdot \pi \cdot n}{3}; n \in \mathbb{Z}$$

ПРИМЕР. Решим уравнение $\cos x = -1$ и найдём корни на промежутке $x \in \left[-2\pi; \frac{2\pi}{3} \right]$.

В такой формулировке чаще всего встречаются тригонометрические уравнения на экзаменах. Сначала просто решим уравнение $x = \pi + 2 \cdot \pi \cdot n$; $n \in \mathbb{Z}$.

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$-2\pi \le \pi + 2 \cdot \pi \cdot n \le \frac{2\pi}{3}$$
. $\Rightarrow -2 \le 1 + 2 \cdot n \le \frac{2}{3} \Rightarrow -3 \le 2 \cdot n \le -\frac{1}{3} \Rightarrow \frac{-3}{2} \le n \le -\frac{1}{6}$

Т.к. п может быть только целым числом, то единственное целое число, удовлетворяющее этому условию, равно -1. Значит, существует единственный корень уравнения, который мы найдём, подставляя вместо п число -1 в равенство $x = \pi + 2 \cdot \pi \cdot n$. Получаем, что корнем уравнения является $x = -\pi$.

ПРИМЕР. Решим уравнение $\cos 4x = 0$ и найдём корни на промежутке $x \in \left[-\pi; \frac{\pi}{6} \right]$.

$$4x = \frac{\pi}{2} + \pi \cdot n; n \in \mathbb{Z}. \Rightarrow x = \frac{\pi}{8} + \frac{\pi \cdot n}{4}; n \in \mathbb{Z}$$

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$-\pi \leq \frac{\pi}{8} + \frac{\pi \cdot n}{4} \leq \frac{\pi}{6} \implies -1 \leq \frac{1}{8} + \frac{n}{4} \leq \frac{1}{6} \implies -\frac{9}{8} \leq \frac{n}{4} \leq \frac{1}{24} \implies -\frac{9}{2} \leq n \leq \frac{1}{6}$$

Т.к. п может быть только целым числом, то целыми числами, удовлетворяющими этому условию, являются: -4; -3; -2; -1; 0. Значит, в уравнении 5 корней, которые мы найдём, подставляя в равенство

$$x=\frac{\pi}{8}+\frac{\pi\cdot n}{4}\text{ числа -4; -3; -2; -1; 0. Получаем, что }x_{1}=-\frac{7\pi}{8}\text{ , }x_{2}=-\frac{5\pi}{8}\text{ , }x_{3}=-\frac{3\pi}{8}\text{ , }x_{4}=-\frac{\pi}{8}\text{ , }x_{5}=\frac{\pi}{8}\text{ .}$$

ПРИМЕР. Решим уравнение $tg\left(2x-\frac{\pi}{4}\right)=0$ и найдём количество корней на промежутке $x \in \left[-20^{\circ};140^{\circ}\right]$.

$$2x - \frac{\pi}{4} = \pi \cdot n; n \in \mathbb{Z} \implies 2x = \frac{\pi}{4} + \pi \cdot n; n \in \mathbb{Z} \implies x = \frac{\pi}{8} + \frac{\pi \cdot n}{2}; n \in \mathbb{Z}$$

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$-20^{\circ} \le \frac{\pi}{8} + \frac{\pi \cdot n}{2} \le 140^{\circ}$$

Для решения неравенства переведём углы, указанные в градусах, в радианы (можно было поступить и наоборот – перевести радианы в градусы).

$$-\frac{\pi}{9} \le \frac{\pi}{8} + \frac{\pi \cdot n}{2} \le \frac{7\pi}{9} \implies -\frac{1}{9} \le \frac{1}{8} + \frac{n}{2} \le \frac{7}{9} \implies -\frac{17}{72} \le \frac{n}{2} \le \frac{47}{72} \implies -\frac{17}{36} \le n \le \frac{47}{36}$$

Т.к. п может быть только целым числом, то этому условию удовлетворяют: 0; 1.

В условии просят найти количество корней, но не просят указать корни, поэтому ответ: в уравнении 2 корня.

ПРИМЕР. Решим уравнение $ctg(3x-60^{\circ})=0$ и найдём количество корней на промежутке $x \in [-30^{\circ}; 120^{\circ}].$

$$3x - 60^0 = \frac{\pi}{2} + \pi \cdot n; n \in Z. \implies x = 20^0 + \frac{\pi}{6} + \frac{\pi \cdot n}{3}; n \in Z \implies x = 50^0 + 60^0 \cdot n; n \in Z$$

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$-30^{\circ} \le 50^{\circ} + 60^{\circ} \cdot n \le 120^{\circ} \Rightarrow -80^{\circ} \le 60^{\circ} \cdot n \le 70^{\circ} \Rightarrow -\frac{4}{3} \le n \le \frac{7}{6}$$

Т.к. п может быть только целым числом, то целыми числами, удовлетворяющими этому условию, являются: -1; 0; 1. В условии просят найти количество корней, но не просят указать корни, поэтому ответ такой: в уравнении 3 корня.

ПРИМЕР. Найти решение уравнения на указанном промежутке $\sin(\pi(x-2)) = 0$, 0 < x < 4.

Обратите внимание, что в условии уравнения нет значка градусов. Следовательно, углы указаны в радианах.

$$\pi(x-2) = \pi k, k \in Z \implies x-2 = k, k \in Z \implies x = 2+k, k \in Z$$

Из условия 0 < x < 4 следует, что 0 < 2 + k < 4, т.е. -2 < k < 2, $k \in \mathbb{Z}$.

Таким образом, при k = -1; 0; 1 получаем x = 1; 2; 3. *Ответ*: 1; 2; 3.

TECT 1.

1. Решить уравнение $\cos x = -1$.

1)
$$-\frac{\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$ 2) $\pi + 2\pi k$, $k \in \mathbb{Z}$. 3) $2\pi k$, $k \in \mathbb{Z}$. 4) πk , $k \in \mathbb{Z}$.

3)
$$2\pi k$$
, $k \in \mathbb{Z}$.

2. Решить уравнение $\sin x = 0$.

1)
$$-\frac{\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$ 2) $\pi + 2\pi k$, $k \in \mathbb{Z}$. 3) πk , $k \in \mathbb{Z}$. 4) $2\pi k$, $k \in \mathbb{Z}$.

$$2) \pi + 2\pi k, \quad k \in \mathbb{Z}.$$

3)
$$\pi k$$
, $k \in \mathbb{Z}$.

3. Решить уравнение $\sin x = 1$.

1)
$$2\pi k$$
, $k \in \mathbb{Z}$.

$$2) \frac{\pi}{2} + 2\pi k, \quad k \in \mathbb{Z}.$$

2)
$$\frac{\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$. 3) $-\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$ 4) $\pi + 2\pi k$, $k \in \mathbb{Z}$.

4. Решить уравнение ctg x = 0.

1)
$$-\frac{\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$ 2) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$. 3) $\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$ 4) $\pi + 2\pi k$, $k \in \mathbb{Z}$.

5. Найти решение уравнения на указанном промежутке $\cos \frac{2x}{5} = 0$, $180^{\circ} < x < 270^{\circ}$.

 $2) 225^{0}$.

 $3) 240^{0}$.

6. Найти решение уравнения на указанном промежутке $\sin \frac{3x}{2} = -1$, $0^{\circ} < x < 270^{\circ}$.

2) 135° .

 $3) 180^{0}$.

7. Найти решение уравнения на указанном промежутке $\cos 9x = 1$, $0^{\circ} < x < 45^{\circ}$.

1) 18^{0} .

 $2) 25^{0}$.

 $3)\ 30^{0}$.

4) 40^{0} .

8. Найти решение уравнения на указанном промежутке $\sin(\pi(x-2)) = 0$, 0 < x < 4.

3) 3.

4) 1, 2, 3.

9. Найти решение уравнения на указанном промежутке $tg(\pi(x-4)) = 0$, 3 < x < 6.

1) 4.

3) 4, 5.

4) нет решений.

10. Найти решение уравнения на указанном промежутке $\cos\!\left(\frac{\pi}{2}\!\left(x-2\right)\right)\!=0, \quad 2 < x < 7$.

1) 3, 4

2) 3, 5.

3) 4, 5. 4) 4, 6.

119. ПРОСТЫЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ.

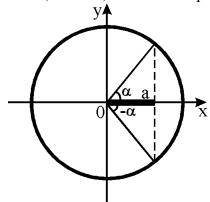
При решении уравнений вида $\cos x = a$, возможно три случая.

- 1. Частные случаи $\cos x = 0$, $\cos x = 1$, $\cos x = -1$, которые мы рассмотрели в прошлом параграфе.
- 2. Если а больше 1 или меньше -1 в уравнении $\cos x = a$, то корней нет, т.к. $|\cos x| \le 1$.

Например: $\cos x = 1,2$ – нет корней,

 $\cos 3x = -2 - \text{нет корней},$

 $\cos (2x + 30^0) = \pi - \text{нет корней и т.д.}$



3. Если а лежит в пределах от -1 до 1 в уравнении $\cos x = a$, то решения уравнения можно показать на чертеже.

Очевидно, что одним из решений является угол, равный $\alpha = \arccos$, а также углы, отличающиеся от угла α на 360° , 720° и т.д.

Другим решением является угол, равный $\alpha = -\arccos a$, а также углы, отличающиеся от него на 360° , 720° и т.д.

Запишем решение уравнения cos x = а в общем виде:

$$x = \pm \arccos + 2 \cdot \pi \cdot k, k \in \mathbb{Z}$$
.

Пример. Найти решение уравнения в указанном промежутке $\cos 2x = 1/2$, $0^{\circ} < x < 180^{\circ}$.

$$2x = \pm \arccos \frac{1}{2} + 360^{\circ} k, k \in \mathbb{Z}$$

$$2x = \pm 60^{\circ} + 360^{\circ}k$$
, $k \in \mathbb{Z}$, или $x = \pm 30^{\circ} + 180^{\circ}k$, $k \in \mathbb{Z}$.

Обязательно перепишите последнее выражение в виде двух равенств

$$x = 30^{0} + 180^{0} k$$
, $k \in Z$ или $x = -30^{0} + 180^{0} k$, $k \in Z$.

Теперь, по очереди, отбираем корни в каждом из решений.

Кстати, если Вам не нужно оформлять работу, например на тестировании, можно отбирать корни, не решая двойное неравенство.

Отберём корни с помощью рассуждения. В первом решении $x = 30^{\circ} + 180^{\circ} k$, $k \in \mathbb{Z}$ при k = 0 $x = 30^{\circ}$, и этот корень входит в указанный в условии промежуток. Остальные корни отличаются от этого корня на 180° , 360° и т.д.

Корень $x = 210^0$ (получается при k = 1) не входит в указанный в условии промежуток, поэтому проверять ещё большие корни не имеет смысла.

Корень $x = -150^0$ (получается при k = -1) не входит в указанный в условии промежуток, поэтому проверять ещё меньшие корни не имеет смысла.

Во втором решении $x = -30^{\circ} + 180^{\circ} \, k$, $k \in \mathbb{Z}$. при k = 0 $x = -30^{\circ}$, и этот корень не входит в указанный в условии промежуток. Остальные корни отличаются от этого корня на 180° , 360° и т.д.

Корень $x = 150^0$ (получается при k = 1) входит в указанный в условии промежуток, поэтому стоит проверить ещё большие корни.

Корень $x = 330^{\circ}$ (получается при k = 2) не входит в указанный в условии промежуток, поэтому проверять ещё большие корни не имеет смысла.

Корень $x = -210^0$ (получается при k = -1) не входит в указанный в условии промежуток, поэтому проверять ещё меньшие корни не имеет смысла.

Ответ: 30⁰ и 150⁰.

В случае, если число а отрицательно, то воспользуемся формулой $arccos(-a) = \pi - arccos a$.

ПРИМЕР. Найти решение уравнения на указанном промежутке $\sqrt{3} + 2\cos\frac{\pi x}{9} = 0$, 8 < x < 20

$$\cos\frac{\pi x}{9} = -\frac{\sqrt{3}}{2} \Rightarrow \frac{\pi x}{9} = \pm \left(\arccos\left(-\frac{\sqrt{3}}{2}\right)\right) + 2\pi n, \ n \in Z \Rightarrow \frac{\pi x}{9} = \pm \left(\pi - \arccos\frac{\sqrt{3}}{2}\right) + 2\pi n, \ n \in Z$$

$$\frac{\pi x}{9} = \pm \frac{5\pi}{6} + 2\pi n, \ n \in Z \Rightarrow x = \pm 7, 5 + 18n, \ n \in Z$$

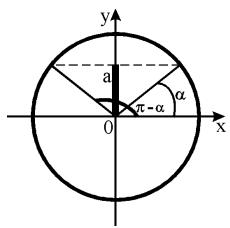
 $x = 7.5 + 18n, n \in Z$ или $x = -7.5 + 18n, n \in Z$ Условию 8 < x < 20 удовлетворяет только значение x = 10.5 при n = 1 во втором уравнении. *Ответ*: 10.5. При решении уравнений вида $\sin x = a$, возможно три случая.

- 1. Частные случаи $\sin x = 0$, $\sin x = 1$, $\sin x = -1$, которые мы рассмотрели в прошлом параграфе.
- 2. Если а больше 1 или меньше -1 в уравнении $\sin x = a$, то корней нет, т.к. $|\sin x| \le 1$.

Например: $\sin x = 2 - \text{нет корней}$,

 $\sin 2x = -1,5 - \text{нет корней},$

 $\sin (5x - 45^0) = 2\pi - \text{нет корней и т.д.}$



3. Если а лежит в пределах от -1 до 1 в уравнении $\sin x = a$, то решения уравнения можно показать на чертеже.

Очевидно, что одним из решений является угол, равный $\alpha = \arcsin a$, а также углы, отличающиеся от угла α на 360° , 720° и т.д.

Другим решением является угол, равный $\alpha = \pi - \arcsin a$, а также углы, отличающиеся от него на 360° , 720° и т.д.

X Запишем решение уравнения sin x = а в общем ви-

де:
$$x_1 = \arcsin a + 2 \cdot \pi \cdot k$$
, $k \in \mathbb{Z}$,

$$x_2 = \pi - \arcsin a + 2 \cdot \pi \cdot k, k \in \mathbb{Z}$$
.

Вспомним, что при отрицательном значении числа а воспользуемся формулой $\arcsin(-a) = -\arcsin a$.

ПРИМЕР. Найти решение уравнения на указанном промежутке

$$\sin \frac{3x}{2} = \frac{\sqrt{3}}{2}$$
, $270^{\circ} < x < 360^{\circ}$.

$$\frac{3x_1}{2} = \arcsin\frac{\sqrt{3}}{2} + 2 \cdot \pi \cdot k, k \in Z \Rightarrow \frac{3x_1}{2} = \frac{\pi}{3} + 2 \cdot \pi \cdot k, k \in Z$$
$$x_1 = \frac{2 \cdot \pi}{9} + \frac{4 \cdot \pi \cdot k}{3}, k \in Z \Rightarrow x_1 = 40^0 + 240^0 \cdot k, k \in Z$$

На указанном промежутке $270^{\circ} < x < 360^{\circ}$ есть решение 280° . Теперь второй случай.

$$\frac{3x_2}{2} = \pi - \arcsin\frac{\sqrt{3}}{2} + 2 \cdot \pi \cdot k, k \in \mathbb{Z} \Rightarrow \frac{3x_2}{2} = \pi - \frac{\pi}{3} + 2 \cdot \pi \cdot k, k \in \mathbb{Z}$$
$$\frac{3x_2}{2} = \frac{2 \cdot \pi}{3} + 2 \cdot \pi \cdot k, k \in \mathbb{Z} \Rightarrow x_2 = \frac{4 \cdot \pi}{9} + \frac{4 \cdot \pi \cdot k}{3}, k \in \mathbb{Z}$$

На указанном промежутке $270^{\circ} < x < 360^{\circ}$ есть решение 320° . Ответ: 280° ; 320° .

ПРИМЕР. Найти решение уравнения на указанном промежутке $\sin 2x = -1/2$, $0^{\circ} < x < 180^{\circ}$.

$$\begin{aligned} 2 \cdot \mathbf{x}_1 &= \arcsin \left(-\frac{1}{2} \right) + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z}, \ \Rightarrow \ 2 \cdot \mathbf{x}_1 = -\arcsin \left(\frac{1}{2} \right) + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \\ 2 \cdot \mathbf{x}_1 &= -\frac{\pi}{6} + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \ \Rightarrow \ \mathbf{x}_1 = -\frac{\pi}{12} + \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \end{aligned}$$

На указанном промежутке $0^{\circ} < x < 180^{\circ}$ есть решение 165° . Теперь второй случай.

$$\begin{aligned} 2 \cdot \mathbf{x}_2 &= \pi - \arcsin \left(-\frac{1}{2} \right) + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \implies 2 \cdot \mathbf{x}_2 = \pi + \arcsin \left(\frac{1}{2} \right) + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \\ 2 \cdot \mathbf{x}_2 &= \pi + \frac{\pi}{6} + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \implies 2 \cdot \mathbf{x}_2 = \frac{7 \cdot \pi}{6} + 2 \cdot \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \implies \mathbf{x}_2 = \frac{7 \cdot \pi}{12} + \pi \cdot \mathbf{k}, \, \mathbf{k} \in \mathbf{Z} \end{aligned}$$

На указанном промежутке $0^{\circ} < x < 180^{\circ}$ есть решение 105° . Ответ: 105° ; 165° .

Замечание. Решение уравнения sin x = а может быть записано в виде

$$x = (-1)^k \arcsin a + \pi \cdot k, k \in \mathbb{Z}$$
.

ПРИМЕР. Ещё раз найдём решение уравнения на указанном промежутке $\sin \frac{3x}{2} = \frac{\sqrt{3}}{2}$, $270^{\circ} < x < 360^{\circ}$.

$$\frac{3x}{2} = (-1)^k \cdot \arcsin \frac{\sqrt{3}}{2} + \pi \cdot k, \ k \in \mathbb{Z} \Rightarrow \frac{3x}{2} = (-1)^k \cdot \frac{\pi}{3} + \pi \cdot k, \ k \in \mathbb{Z}$$
$$x = (-1)^k \cdot \frac{2 \cdot \pi}{9} + \frac{2 \cdot \pi \cdot k}{3}, \ k \in \mathbb{Z} \Rightarrow x = (-1)^k \cdot 40^0 + 120^0 \cdot k, \ k \in \mathbb{Z}.$$

Теперь произведём отбор корней.

Пусть k = 0, тогда $x = 40^{\circ}$. Пусть k = 1, тогда $x = 80^{\circ}$. Пусть k = 2, тогда $x = 280^{\circ}$.

Пусть k = 3, тогда $x = 320^{\circ}$. Пусть k = 4, тогда $x = 520^{\circ}$ и т.д. Очевидно, что корни уравнения при таком решении совпадают с корнями, найденными первым способом.

При решении уравнений вида tg x = a и ctg x = a проблем гораздо меньше.

$$tg \ x = a \Rightarrow x = arctga + \pi \cdot k, k \in Z$$

 $ctg \ x = a \Rightarrow x = arcctga + \pi \cdot k, k \in Z$

Сразу же вспомним, что arctg(-x) = -arctg x; $arcctg(-x) = \pi$ -arcctg x.

ПРИМЕР. Решить уравнение $tgx = -1/\sqrt{3}$.

$$x = arctg\left(-\frac{1}{\sqrt{3}}\right) + 180^{0} \, k, \, k \in Z \implies x = -arctg\left(\frac{1}{\sqrt{3}}\right) + 180^{0} \, k, \, k \in Z \implies x = -\frac{\pi}{6} + \pi \cdot k, \,$$

Otbet: $-\frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$.

ПРИМЕР. Найти решение уравнения на указанном промежутке $ctg2x = -\frac{1}{\sqrt{3}}$, $90^{\circ} < x < 180^{\circ}$

$$2x = arcctg \left(-\frac{1}{\sqrt{3}}\right) + 180^{0} \, k, \, k \in Z \implies 2x = \pi - arcctg \left(\frac{1}{\sqrt{3}}\right) + 180^{0} \, k, \, k \in Z \implies 2x = 120^{0} + 180^{0} \, k, \, k \in Z.$$

Отсюда $x = 60^{\circ} + 90^{\circ} \, k$, $k \in Z$. Условию $90^{\circ} < x < 180^{\circ}$ удовлетворяет значение $x = 150^{\circ}$. *Ответ:* 150° .

TECT 1.

1. Решить уравнение $\ \, \text{tg x} = \sqrt{3} \ \, \text{и найти количество} \ \,$ корней на указанном промежутке $-\frac{2 \cdot \pi}{3} \leq \text{x} \leq \frac{4 \cdot \pi}{3} \, .$

1) $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 2 корня

2) $\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 4 корня

3) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; 3 корня

4) $\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; Зкорня.

2. Решить уравнение $\sin x = -\sqrt{3}/2$ и найти количество корней на указанном промежутке $-\frac{2 \cdot \pi}{3} \le x \le \frac{\pi}{3}$.

1) $-\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня

 $2) \ -\frac{5\pi}{6} + 2\pi k, \quad k \in Z; \quad -\frac{\pi}{6} + 2\pi n, \quad n \in Z; \ 3 \ корня$

3) $-\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня.

4) $-\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; $-\frac{2\pi}{3} + \pi n$, $n \in \mathbb{Z}$; 4 корня

3. Решить уравнение $\cos x = -\sqrt{2}/2$ и найти количество корней на указанном промежутке $-\frac{3 \cdot \pi}{4} \le x \le \frac{\pi}{4}$.

 $1)\ \pm\frac{3\pi}{4}+2\pi k,\quad k\in Z; 1\ корень$

2) $\pm \frac{3\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; 2 корня

3) $-\frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня.

4) $\pm \frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$; Зкорня

4. Решить уравнение $\cos x = \sqrt{3}/2$ и найти количество корней на указанном промежутке $-\frac{4\cdot\pi}{3} \le x \le \frac{2\cdot\pi}{3}$.

1) $\pm \frac{2\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 6 корней

2) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня

3) $\pm \frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}; 2$ корня

 $(4)\frac{5\pi}{6} + 2\pi k, \quad k \in \mathbb{Z}; \quad \frac{\pi}{6} + 2\pi n, \quad n \in \mathbb{Z}; 3$ корня

5. Решить уравнение $tg \ x = -1/\sqrt{3}$ и найти количество корней на указанном промежутке $-\frac{2 \cdot \pi}{2} \le x \le \frac{\pi}{2}$.

1) $-\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 2 корня

2) $-\frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}; 1$ корень

3) $-\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 2 корня

4) $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; Зкорня

6. Решить уравнение $\lg x = -1$, и найти сумму корней удовлетворяющих условию $-140^{\circ} < x < 220^{\circ}$.

1) -45⁰. 2) 45⁰. 3) 90⁰. 4) 135⁰.

7. Решить уравнение и найти количество корней на указанном промежутке $\sin x = 1/2.-110^{\circ} < x < 230^{\circ}$.

1) 1. 2) 2. 3) 3. 4) 4.

8. Найти решение уравнения на указанном промежутке $\sin 3x = 1/2$, $0^{\circ} < x < 90^{\circ}$.

1) 10⁰; 50⁰. 2) 15⁰. 3) 15⁰, 75⁰. 4) 40⁰; 80⁰.

9. Найти решение уравнения на указанном промежутке $ctg2x = -\frac{1}{\sqrt{3}}, \quad 90^{\circ} < x < 180^{\circ}$.

1) 96^0 2) 105^0 3) 120^0 4) 150^0

10. Решить уравнение и найти количество корней на указанном промежутке.

 $\sin(35^{\circ} + x) = \frac{\sqrt{2}}{2}, -80^{\circ} < x < 0^{\circ}.$

1) 0 2) 1 3) 2 4) 3

11. Решить уравнение и указать наименьший положительный корень (в градусах)

 $\sqrt{3}\operatorname{tg}\left(3x + \frac{\pi}{6}\right) - 3 = 0.$

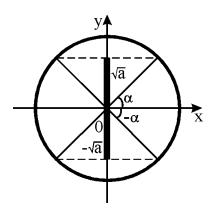
1) 10^0 . 2) 20^0 . 3) 30^0 . 4) 40^0 .

12. Найти решение уравнения на указанном промежутке $1-2\sin\frac{4\pi x}{3}=0, \quad 0< x<1.$

1) 0,2. 2) 0,5. 3) 0,375. 4) 0,125; 0,625.

13. Найти решение уравнения на указанном промежутке $1-\sqrt{2}\cos\frac{3\pi x}{4}=0, \quad 2,5\leq x\leq 4$.

1) 2,5. 2) 3. 3) 3; 4. 4) 4.



120. ПРОСТЫЕ УРАВНЕНИЯ С КВАДРАТАМИ И МОДУЛЯМИ.

Уравнения вида $\sin^2 x = a$, $\cos^2 x = a$, $tg^2 x = a$, $ctg^2 x = a$ имеют похожие решения.

Очевидно, что в этих уравнениях будут корни, при условии, что число а неотрицательно, и в уравнениях с синусом и косинусом не превосхолит 1.

Итак, решим уравнение $\sin^2 x = a$.

Тогда, $\sin x = \sqrt{a}$ или $\sin x = -\sqrt{a}$.

Изобразим все решения на чертеже.

Очевидно, что решением уравнения $\sin^2 x = a$ является множество кор-

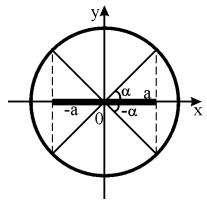
ней: $x = \pm \arcsin \sqrt{a} + \pi \cdot k, k \in \mathbb{Z}$.

Аналогично определим, что решением уравнения $\cos^2 x = a$, является множество корней:

 $x = \pm \arccos \sqrt{a} + \pi \cdot k$, $k \in \mathbb{Z}$, решением уравнения $tg^2x = a$, является множество корней:

 $x = \pm arctg \sqrt{a} + \pi \cdot k, k \in Z$, решением уравнения $ctg^2x = a$, является множество корней:

 $x = \pm \operatorname{arcctg} \sqrt{a} + \pi \cdot k, k \in \mathbb{Z}$.



Решение уравнений вида $\left|\sin x\right|=a$, $\left|\cos x\right|=a$, $\left|tgx\right|=a$ и $\left|ctgx\right|=a$ очень похоже.

Итак, решим уравнение $|\sin x| = a$.

Тогда, $\sin x = a$ или $\sin x = -a$.

Очевидно, что решением уравнения $|\sin x| = a$ является множество корней: $x = \pm \arcsin a + \pi \cdot k$, $k \in \mathbb{Z}$.

Аналогично определим, что решением уравнения $|\cos x| = a$ является множество корней: $x = \pm \arccos + \pi \cdot k, \ k \in Z$, решением уравнения |tgx| = a является множество корней: $x = \pm \arctan + \pi \cdot k, \ k \in Z$, решением

уравнения |ctgx| = a является множество корней: $x = \pm arcctga + \pi \cdot k, k \in \mathbb{Z}$.

ПРИМЕР. Решить уравнение $3\sin^2 x - \cos^2 x - 1 = 0$.

Из уравнения получим $3\sin^2 x - \left(1 - \sin^2 x\right) - 1 = 0$ или $2\sin^2 x = 1$. Значит, $\sin^2 x = \frac{1}{2}$, тогда $x = \pm \arcsin \sqrt{\frac{1}{2}} + \pi \cdot n$, $n \in Z$. Получаем $x = \pm \frac{\pi}{4} + \pi n$, $n \in Z$. Ответ: $\pm \frac{\pi}{4} + \pi n$, $n \in Z$.

1. Решить уравнение $\sin^2 x = \frac{3}{4}$ и найти количество корней, удовлетворяющих условию $-\frac{\pi}{3} \le x \le \frac{4 \cdot \pi}{3}$.

1)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня

2)
$$\pm \frac{\pi}{6} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня

3)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 3 корня

4)
$$\pm \frac{\pi}{6} + \pi k$$
, $k \in \mathbb{Z}$; 3 корня

2. Решить уравнение $\cos^2 x = \frac{1}{2}$ и найти сумму корней, удовлетворяющих условию $-240^\circ < x < 500^\circ$.

1)
$$0^0$$
.

 $3) 480^{\circ}$.

4) 1215^0 .

3. Решить уравнение $tg^2x = 1$ и найти количество корней, удовлетворяющих условию $-\frac{3 \cdot \pi}{4} \le x \le \frac{2 \cdot \pi}{3}$.

1)
$$\pm \frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$; 3 корня

2)
$$\pm \frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$; 2 корня

3)
$$\pm \frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня 4) $\pm \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; 4 корня

4)
$$\pm \frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня

4. Решить уравнение $ctg^2x = 3$ и найти количество корней, удовлетворяющих условию $-\frac{\pi}{6} \le x \le \pi$.

1)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня. 2) $\pm \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 4 корня

2)
$$\pm \frac{\pi}{6} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня

3)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 3 корня

3)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 3 корня 4) $\pm \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 3 корня

5. Решить уравнение $2\cos^2\left(\frac{\pi}{4} - \frac{3}{2}x\right) - 1 = 0$ и найти сумму корней, удовлетворяющих условию

 $-80^{\circ} < x < 100^{\circ}$.

6. Решить уравнение: $3tg^2 \left(\pi x - \frac{\pi}{8} \right) = 1, \quad \frac{3}{2} < x < 3$.

2) 1,5; 2 3) $1\frac{23}{24}$, $2\frac{7}{24}$, $2\frac{23}{24}$. 4) $1\frac{11}{24}$, $2\frac{1}{24}$, $2\frac{23}{24}$

7. Решить уравнение $|\sin 4x| = \frac{\sqrt{3}}{2}$ и найти количество корней, удовлетворяющих условию $-\frac{2\cdot\pi}{2} \le x \le \frac{\pi}{2}$.

1)
$$\pm \frac{\pi}{12} + \pi k$$
, $k \in \mathbb{Z}$; $\pm \frac{\pi}{6} + \pi n$, $n \in$

1)
$$\pm \frac{\pi}{12} + \pi k$$
, $k \in \mathbb{Z}$; $\pm \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$; 6 корней 2) $\pm \frac{\pi}{12} + \frac{\pi k}{4}$, $k \in \mathbb{Z}$; 9 корней

3)
$$\pm \frac{\pi}{12} + \frac{\pi k}{2}$$
, $k \in \mathbb{Z}$; 12 корней

4)
$$\pm \frac{\pi}{6} + \frac{\pi k}{2}$$
, $k \in \mathbb{Z}$; $\pm \frac{\pi}{6} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$; 12 корней

8. Решить уравнение $|\cos 2x| = 1$ и найти количество корней, удовлетворяющих условию

$$-\frac{2\cdot\pi}{3}\leq x\leq \frac{4\cdot\pi}{3}.$$

2) 2 корня

3) 3 корня 4) 4 корня

9. Решить уравнение $\left| \text{ctg} \frac{2x}{3} \right| = \frac{1}{\sqrt{3}}$ и найти сумму корней, удовлетворяющих условию $-\pi \le x \le \pi$.

1)
$$\pm \frac{\pi}{2} + \frac{3}{2}\pi k$$
, $k \in \mathbb{Z}$; 0. 2) $\pm \frac{\pi}{2} + \frac{3}{2}\pi k$, $k \in \mathbb{Z}$; $\frac{\pi}{2}$

2)
$$\pm \frac{\pi}{2} + \frac{3}{2}\pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{2}$

3)
$$\pm \frac{\pi}{2} + \frac{2}{3}\pi k$$
, $k \in \mathbb{Z}$; 0 4) $\pm \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; π

4)
$$\pm \frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$; π

121. УРАВНЕНИЯ, СВОДЯЩИЕСЯ К КВАДРАТНЫМ.

Примеры решения уравнений.

ПРИМЕР. Решить уравнение $2\cos^2 x + 5\sin x - 4 = 0$.

Имеем: $2\cos^2 x + 5\sin x - 4 = 0 \implies 2 \cdot (1 - \sin^2 x) + 5\sin x - 4 = 0 \implies 2\sin^2 x - 5\sin x + 2 = 0$

Произведём замену переменных $\sin x = t$.

Получаем: $2 \cdot t^2 - 5 \cdot t + 2 = 0 \Rightarrow t = 2; t = 0,5 \Rightarrow \sin x = 2; \sin x = 0,5$. Так как $|\sin x| \le 1$, то годится

только sin x = 0,5, откуда $\ x_1=\frac{\pi}{6}+2\pi k\,; \quad x_2=\frac{5\pi}{6}+2\pi n, \quad k,\,n\in Z\,.$

Otbet: $\frac{\pi}{6} + 2\pi k$; $\frac{5\pi}{6} + 2\pi n$, $k, n \in \mathbb{Z}$.

ПРИМЕР. Решить уравнение: $(\cos 2x - 1)\cot g^2 x = -3\sin x$.

Используем формулу косинуса двойного угла: $\cos 2x = \cos^2 x - \sin^2 x$.

$$(\cos^2 x - \sin^2 x - 1)\operatorname{ctg}^2 x = -3\sin x \implies -2\sin^2 x \cdot \operatorname{ctg}^2 x = -3\sin x$$

$$2\sin^2 x \cdot \operatorname{ctg}^2 x - 3\sin x = 0 \implies \sin x \cdot (2\sin x \cdot \operatorname{ctg}^2 x - 3) = 0$$

$$\sin x \cdot \left(2\sin x \cdot \frac{\cos^2 x}{\sin^2 x} - 3\right) = 0 \implies \sin x \cdot \left(\frac{2\cos^2 x}{\sin x} - 3\right) = 0 \implies \sin x \cdot \left(\frac{2\cos^2 x - 3\sin x}{\sin x}\right) = 0$$

$$2\cos^2 x - 3\sin x = 0 \implies 2(1 - \sin^2 x) - 3\sin x = 0$$

Произведём замену переменных $\sin x = t$ и т.д. Ответ: $x = (-1)^n \frac{\pi}{6} + \pi n$.

ПРИМЕР. Решить уравнение: $2 \cdot tgx + 2 \cdot ctgx = 3$.

$$2 \cdot tgx + \frac{2}{tgx} = 3$$

Произведём замену переменных tg x = t, приведём к общему знаменателю и решим квадратное уравнение. Ответ: нет решений.

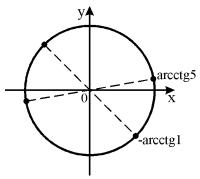
ПРИМЕР. Решить уравнение $\frac{1}{\sin^2 x} - 4 \cdot \text{ctg } x = 6$ и найти количество корней на $[0^0; 360^0]$.

C учётом формулы $1+ctg^2\alpha=\frac{1}{\sin^2\alpha}$ получаем $1+ctg^2x-4\cdot ctg\,x=6$. Тогда $ctg^2x-4\cdot ctg\,x-5=0$. По-

лучаем ctgx=5 и \cdot ctg x=-1 . Корни равнения $x_1=arcctg5+\pi k$; $x_2=-\frac{\pi}{4}+\pi n$, $k,n\in Z$

Для нахождения количества корней используем «хитрый» способ. Нанесём на единичную окружность точки, соответствующие $\operatorname{ctgx} = 5 \operatorname{u} \cdot \operatorname{ctg} \operatorname{x} = -1$. С $\operatorname{ctg} \operatorname{x} = -1$ разобраться

просто. Это точки



$$x_2 = -\frac{\pi}{4} + \pi n$$
, $n \in \mathbb{Z}$, т.е. углы -45 0 , 135 0 и.т.д. При нанесении на окруж-

агссtg5 ность точек, соответствующих условию ctgx = 5 надо понимать, что котангенс положителен в первой и третьей четвертях, а значит, мы должны нанести одну точку в первой четверти и одну точку в третьей четверти. Котангенс убывающая функция, т.е. большему значению угла соответствует меньшее значение котангенса. Например, $ctg30^\circ = \sqrt{3}$, $ctg45^\circ = 1$. Значит, угол в первой четверти, соответствующий условию ctgx = 5, меньше

 30^{0} , ближе к нулю. А в третьей четверти это угол близок к 180^{0} .

Итак, на окружности 4 точки. В условии уравнения сказано, что корни должен принадлежать промежутку $[0^0; 360^0]$. т.е. надо сделать один оборот по тригонометрической окружности, а значит, в уравнении 4 корня.

Кстати, если бы в условии было бы сказано, что корни должны принадлежать промежутку [-360^o], то надо сделать 2 оборота по тригонометрической окружности, а значит, в уравнении8 корней.

Обратите внимание, что при решении уравнений, содержащих tg x или ctg x, необходимо учитывать ОДЗ. В уравнениях с tg x будем учитывать, что cos x не равен нулю, а в уравнениях с ctg x будем учитывать, что sin x не равен нулю.

ПРИМЕР. Решить уравнение $tg^2 \frac{x}{2} - \frac{1}{ctg \frac{x}{2}} = 2 \cdot tg \, x \cdot ctg \, x$ и найти корни на промежутке $[0^0; 360^0]$.

Сначала определим ОДЗ по исходному примеру: $\cos \frac{x}{2} \neq 0$, $\sin \frac{x}{2} \neq 0$, $\cos x \neq 0$, $\sin x \neq 0$ Решать ОДЗ не нужно. Когда мы найдём корни уравнения, мы проверим их на выполнение условий

$$\cos\frac{x}{2} \neq 0, \sin\frac{x}{2} \neq 0, \cos x \neq 0, \sin x \neq 0.$$

Решаем

$$tg^2 \frac{x}{2} - tg \frac{x}{2} - 2 = 0$$
 и получаем $tg \frac{x}{2} = 2$ и $tg \frac{x}{2} = -1$.

$$\operatorname{rg} \frac{x}{2} = 2$$
 и $\operatorname{tg} \frac{x}{2} = -1$. Тогда

$$\frac{x}{2} = \text{arctg2} + \pi \cdot k \quad \text{и} \ \frac{x}{2} = \frac{\pi}{4} + \pi \cdot n \quad k, \ n \in Z \ . \ \ \text{Значит}, \ \ x = 2 \cdot \text{arctg2} + 2 \cdot \pi \cdot k \quad \text{и} \ \ x = \frac{\pi}{2} + 2 \cdot \pi \cdot n \quad k, \ n \in Z \ .$$

На промежутке $[0^0; 360^0]$ получаем корни $x_1 = 2 \cdot \arctan 2$. Но корень $x_2 = \frac{\pi}{2}$ не удовлетворяет условию $\cos x \neq 0$. Ответ: $x = 2 \cdot \operatorname{arctg2}$

TECT 1.

1. Решить уравнение $2\sin^2 x + \sin x - 1 = 0$ и найти количество корней на промежутке $\left| 0; \frac{3 \cdot \pi}{2} \right|$.

1)
$$-\frac{\pi}{4} + 2\pi k$$
; $\frac{\pi}{6} + \pi n$; $\frac{5\pi}{6} + 2\pi m$, $k, n, m \in \mathbb{Z}$; 5 корней.

2)
$$\frac{\pi}{2} + 2\pi k$$
; $\frac{\pi}{3} + 2\pi n$; $\frac{5\pi}{6} + \pi m$, $k, n, m \in \mathbb{Z}; 4$ корня.

3)
$$-\frac{\pi}{2} + 2\pi k$$
; $\frac{\pi}{6} + 2\pi n$; $\frac{5\pi}{6} + 2\pi m$, $k, n, m \in \mathbb{Z}$; 3 корня.

4)
$$\frac{\pi}{2} + \pi k$$
; $\frac{\pi}{6} + \pi n$; $\frac{5\pi}{6} + \pi m$, $k, n, m \in \mathbb{Z}$; 6 корней

2. Решить уравнение $\cos^2 x - \sin x - 1 = 0$ и найти количество корней на промежутке $\left| 0; \frac{3 \cdot \pi}{2} \right|$.

1)
$$\frac{\pi k}{2}$$
; $k \in \mathbb{Z}$; 3 корня.

2)
$$\pi k$$
; $-\frac{\pi}{2} + 2\pi n$, $k, n \in \mathbb{Z}$; 3 корня.

3)
$$2\pi k$$
; $\frac{\pi}{2} + 2\pi n$, $k, n \in \mathbb{Z}$; 2 корня.

3)
$$2\pi k$$
; $\frac{\pi}{2} + 2\pi n$, $k, n \in \mathbb{Z}$; 2 корня. 4) πk ; $\frac{\pi}{2} + 2\pi n$, $k, n \in \mathbb{Z}$; 2 корня.

3. Решить уравнение $4\sin^2 x - 4\cos x - 1 = 0$ и найти количество корней на промежутке $[0; 3 \cdot \pi]$.

1)
$$\frac{\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$; 2 корня

2)
$$\pm \frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; 2 корня

3)
$$\pm \frac{\pi}{3} + 2\pi k$$
, $k \in \mathbb{Z}$; 3 корня. 4) $\pm \frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 4 корня

4)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 4 корня

4. Решить уравнение $\sqrt{2} \cdot \sin x + \cot x = 0$ и найти сумму корней на промежутке $\left| -\frac{\pi}{2}; \frac{3 \cdot \pi}{2} \right|$.

1)
$$\pm \frac{3\pi}{4} + 2\pi k, k \in \mathbb{Z}$$
; 2π . 2) $\frac{3\pi}{4} + 2\pi k, k \in \mathbb{Z}$; $\frac{3\pi}{4}$ 3) $\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$; π 4) $\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$; π

2)
$$\frac{3\pi}{4} + 2\pi k, k \in \mathbb{Z}; \frac{3\pi}{4}$$

3)
$$\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}; \pi$$

4)
$$\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}; \pi$$

5. Решить уравнение $\cos 6x + 6\cos^2 3x = 1$ и найти сумму корней, удовлетворяющих условию $-90^{\circ} < x < 120^{\circ}$. 1) 100° . $2) 105^{0}$. $3) 110^{0}$.

6. Решить уравнение $tg x + 3 \cdot ctg x = 4$ и найти количество корней на $[0^0; 360^0]$.

1)
$$x_1 = \pm \frac{\pi}{4} + \pi n$$
, $x_2 = \arctan 3 + 2\pi n$; 3 корня

2)
$$x_1 = \frac{\pi}{4} + \pi n$$
, $x_2 = \arctan 3 + \pi n$; 4 корня.

3)
$$x_1 = \frac{3\pi}{4} + \pi n$$
, $x_2 = arctg3 + 2\pi n$; 2 корня

4)
$$x_1 = -\frac{\pi}{4} + \pi n$$
, $x_2 = -\arctan 3 + \pi n$; 4 корня

122. РАЗЛОЖЕНИЕ НА МНОЖИТЕЛИ И ДРУГИЕ НЕСЛОЖНЫЕ УРАВНЕНИЯ.

Примеры решений уравнений.

ПРИМЕР. Решить уравнение. $\cos^2 x + \sin x \cos x = 1$.

$$\sin x \cos x = 1 - \cos^2 x$$

$$\sin x \cos x = \sin^2 x$$

$$\sin x \cos x - \sin^2 x = 0$$

$$\sin x \cdot (\cos x - \sin x) = 0$$

$$\sin x = 0 \text{ или } \cos x - \sin x = 0$$

ПРИМЕР. Решим уравнение $\cos x - \sin x = 0$.

$$\sin x = \cos x$$

Разделим на соз x левую и правую части уравнения и получим: $tg \, x = 1$. Ответ: πk ; $\frac{\pi}{4} + \pi n$, $k, n \in Z$

Обратите внимание, что деление обеих частей уравнения на $\cos x$, $\cos^2 x$, $\sin x$, $\sin^2 x$ — это очень удобный способ решения уравнений, позволяющий перейти от двух функций $\cos x$ и $\sin x$ к одной функции $\cos x$ и $\sin x$ к одной $\cos x$ и $\sin x$ и

ПРИМЕР. Решить уравнение. $5\sin^2 x = 2-\cos^2 x$.

Вместо 2 запишем $2 \cdot (\sin^2 x + \cos^2 x)$ и получим:

$$5\sin^2 x = 2 \cdot (\sin^2 x + \cos^2 x) - \cos^2 x$$

 $5\sin^2 x = 2 \cdot \sin^2 x + 2 \cdot \cos^2 x - \cos^2 x$
 $3\sin^2 x = \cos^2 x \implies tg^2 x = \frac{1}{3}$ и т.д.

ПРИМЕР. Решить уравнение. $\sqrt{3} \sin 5x + 1 = \cos 10x$.

Используем формулу косинуса двойного угла: $\cos 10x = 1 - 2\sin^2 5x$ и получаем

$$\sqrt{3}\sin 5x + 1 = 1 - 2\sin^2 5x$$
.

Тогда, $\sqrt{3}\sin 5x + 2\sin^2 5x = 0$ или $\sin 5x \cdot (\sqrt{3} + 2\sin 5x) = 0$.

Получаем, что $\sin 5x = 0$ или $\sqrt{3} + 2\sin 5x = 0$.

Решение первого уравнения очевидно. Решим второе уравнение. $2\sin 5x = -\sqrt{3}$. $\sin 5x = -\frac{\sqrt{3}}{2}$

Потренируемся в использовании второго способа решения уравнения с синусом.

$$5x = (-1)^n \arcsin\left(-\frac{\sqrt{3}}{2}\right) + \pi n$$
$$5x = (-1)^n \left(-\frac{\pi}{3}\right) + \pi n$$

Внимательно следите за следующими преобразованиями:

$$5x = (-1)^{n} \cdot (-1) \cdot \frac{\pi}{3} + \pi n \implies 5x = (-1)^{n} \cdot (-1)^{1} \cdot \frac{\pi}{3} + \pi n$$
$$5x = (-1)^{n+1} \cdot \frac{\pi}{3} + \pi n \implies x = (-1)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$$

ПРИМЕР. Решить уравнение $\frac{1}{2}\sin 4x = 2\sin x\cos x$ и найти количество корней на $[0; 2\pi]$.

Обратите особое внимание на решение этого уравнения. Будут показаны наиболее часто встречаемые ошибки. Используем формулы двойного угла для преобразования левой части уравнения:

$$\frac{1}{2}\sin 4x = \frac{1}{2} \cdot 2\sin 2x\cos 2x = \sin 2x\cos 2x \quad \text{и для правой части уравнения: } 2\sin x\cos x = \sin 2x \, .$$

Получаем $\sin 2x \cdot \cos 2x = \sin 2x$.

Надеюсь, Вы не хотите услышать от меня язвительные комментарии на тему: «Я теряю корни», поэтому Вы не сократите на $\sin 2x$, а перенесёте его в левую часть и вынесете за скобки $\sin 2x \cdot \cos 2x - \sin 2x = 0$. Тогда $\sin 2x \cdot (\cos 2x - 1) = 0$. Имеем два случая: $\sin 2x = 0$ или $\cos 2x - 1 = 0$.

Решим сначала $\sin 2x = 0$

$$2x = \pi \cdot n; n \in \mathbb{Z}. \Rightarrow x = \frac{\pi \cdot n}{2}; n \in \mathbb{Z}$$

Для отбора корней решим двойное неравенство $0 \le \frac{\pi \cdot n}{2} \le 2 \cdot \pi$

$$0 \le \pi \cdot n \le 4 \cdot \pi \implies 0 \le n \le 4$$

Нам подходят n = 0; 1; 2; 3; 4 - т.е. 5 корней.

Теперь $\cos 2x - 1 = 0$.

$$\cos 2x = 1 \implies 2x = 2 \cdot \pi \cdot n; n \in \mathbb{Z}. \implies x = \pi \cdot n; n \in \mathbb{Z}$$

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$0 \le \pi \cdot n \le 2\pi$$
. $\Rightarrow 0 \le n \le 2$

Нам подходят n = 0; 1; 2 - т.е. 3 корня.

Казалось бы, в уравнении 8 корней. Но это ошибка. Корни в первом и втором случае могут совпадать. После нахождения целых значений п, надо обязательно найти корни х в каждом из случаев.

В первом случае
$$x = \frac{\pi \cdot n}{2}$$
; $n = 0, 1, 2, 3, 4$. Получаем корни $x = 0; \frac{\pi}{2}; \pi; \frac{3\pi}{2}; 2\pi$.

Во втором случае $x = \pi \cdot n$; n = 0, 1, 2. Получаем корни $x = 0; \pi; 2\pi$.

Мы видим, что корни $x = 0; \pi; 2\pi$ - повторяются в обоих уравнениях, два раза их учитывать не надо.

Итак, в уравнении 5 корней
$$x = 0; \frac{\pi}{2}; \pi; \frac{3\pi}{2}; 2\pi$$
.

Замечание. Иногда ученики неправильно отбирают корни так: в первом случае n = 0; 1; 2; 3; 4 - т.е. 5 корней, во втором случае n = 0; 1; 2 - т.е. 3 корня, но 0; 1; 2 - совпадают, поэтому их два раза учитывать не надо. Это бессмысленное рассуждение. Надо проверять совпадение корней, а не их номеров.

Кстати, более правильным решением является запись разных букв, обозначающих целые числа в отве-

тах. В данном случае
$$x = \frac{\pi \cdot n}{2}$$
; $n \in Z$ и $x = \pi \cdot k$; $k \in Z$.

На тестировании это непринципиально, а при решении письменной работы в школе это надо учитывать.

TECT 1.

1. Решить уравнение $\sin^2 x + \sin x \cos x = 0$ и найти количество корней на промежутке $[0; 2\pi]$.

1)
$$2\pi k$$
; $\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$;3 корня

2)
$$\pi k$$
; $-\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$;5 корней.

3)
$$\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 6 корней

4)
$$2\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$;5 корней

2. Решить уравнение $\cos^2 x - \cos x \sin x = 1$ и найти количество корней на промежутке $[0; 2\pi]$.

1)
$$\pi k$$
; $-\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$;5 корней.

2)
$$2\pi k$$
; $\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}; 4$ корня

3)
$$\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 6 корней 4) $2\pi k$; $\frac{3\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 5 корней

4)
$$2\pi k$$
; $\frac{3\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 5 корней

3. Решить уравнение $\cos^2 x - \sin^2 x = 0$ и найти сумму корней на промежутке $[0; 2\pi]$

$$2\pi$$
.

3)
$$3\pi$$
.

4)
$$4\pi$$
.

4. Решить уравнение $5-4\sin^2 x = 5\cos^2 x$ и найти количество корней на промежутке $[0;2\pi]$.

1)
$$2\pi k$$
, $k \in \mathbb{Z}$; 2 корня 2) $\frac{\pi k}{2}$, $k \in \mathbb{Z}$; 4 корня 3) πk , $k \in \mathbb{Z}$; 3 корня 4) $\pi + \pi k$, $k \in \mathbb{Z}$; 3 корня

5. Решить уравнение $2\sin\left(\frac{13\pi}{3}\right)\sin 5x + 1 = \cos 10x$ и найти количество корней на [-90°; 90°].

1)
$$x_1 = \frac{\pi n}{5}$$
, $x_2 = (-1)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 15 корней.

1)
$$x_1 = \frac{\pi n}{5}$$
, $x_2 = \left(-1\right)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 15 корней. 2) $x_1 = \frac{\pi n}{5}$, $x_2 = \left(-1\right)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 11 корней.

3)
$$x_1 = \frac{\pi n}{5}$$
, $x_2 = (-1)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 17 корней.

3)
$$x_1 = \frac{\pi n}{5}$$
, $x_2 = \left(-1\right)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 17 корней. 4) $x_1 = \frac{\pi n}{5}$, $x_2 = \left(-1\right)^{n+1} \frac{\pi}{15} + \frac{\pi n}{5}$, 10 корней.

123. ПРОСТЫЕ УРАВНЕНИЯ С «НЕКРАСИВЫМИ» ОТВЕТАМИ.

ПРИМЕР. Решить уравнение $3\sin^2 x - 3\cos 2x - 12\sin x + 7 = 0$ и найти количество корней, удовлетворяющих условию $-\frac{5\pi}{6} \le x \le \frac{2\pi}{3}$.

Используем формулу косинуса двойного угла: $\cos 2x = \cos^2 x - \sin^2 x$

Получаем: $3\sin^2 x - 3(\cos^2 x - \sin^2 x) - 12\sin x + 7 = 0$

Упростим: $3\sin^2 x - 3\cos^2 x + 3\sin^2 x - 12\sin x + 7 = 0$

 $6\sin^2 x - 3\cos^2 x - 12\sin x + 7 = 0$

С помощью основного тригонометрического тождества заменим: $\cos^2 x = 1 - \sin^2 x$ и получим

$$6\sin^2 x - 3(1 - \sin^2 x) - 12\sin x + 7 = 0$$

$$6\sin^2 x - 3 + 3\sin^2 x - 12\sin x + 7 = 0$$

$$9\sin^2 x - 12\sin x + 4 = 0$$

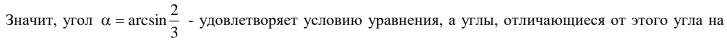
Произведём замену переменных $\sin x = t$, учитывая, что $-1 \le t \le 1$. Получаем: $9t^2 - 12t + 4 = 0$.

$$t = \frac{2}{3} < 1$$

Значит: $\sin x = \frac{2}{3}$

$$x_1 = \arcsin \frac{2}{3} + 2\pi n$$
, $x_2 = \pi - \arcsin \frac{2}{3} + 2\pi n$

Для отбора корней важно понимать, что арксинус любого числа, лежащего в пределах от нуля до единицы – есть угол, лежащий в пределах от 0^0 до 90^0 .



 360^{0} и более градусов, нет. Теперь оценим величину угла $\beta = \pi - \arcsin\frac{2}{3}$.

Учтём, что функция арксинуса – возрастающая, т.е. большему значению числа, стоящего под знаком арксинуса, соответствует больший угол.

Мы знаем, что $\arcsin\frac{1}{2}=\frac{\pi}{6}$. Мы знаем, что $\arcsin\frac{\sqrt{2}}{2}=\frac{\pi}{4}$. Учтём, что $\frac{1}{2}=0.5$, $\frac{\sqrt{2}}{2}\approx0.707$, $\frac{2}{3}=0.66$.

Т.к.
$$\frac{1}{2} < \frac{2}{3} < \frac{\sqrt{2}}{2}$$
, то $\frac{\pi}{6} < \arcsin \frac{2}{3} < \frac{\pi}{4}$, т.е. угол $\alpha = \arcsin \frac{2}{3}$ лежит в пределах от 30^{0} до 45^{0} .

Тогда, угол $\beta = \pi - \arcsin \frac{2}{3}$ лежит в пределах от 135 0 до 150 0 , что **не удовлетворяет** условию уравнения.

Углы, отличающиеся от этого угла на 360^{0} и более градусов, также не удовлетворяют условию уравнения.

Итак, условию уравнения удовлетворяет только один корень $x = \arcsin \frac{2}{3}$

Ответ: $x_1 = \arcsin \frac{2}{3} + 2\pi n$, $x_2 = \pi - \arcsin \frac{2}{3} + 2\pi n$, 1 корень.

ПРИМЕР. Решить уравнение $tg^2 x - 4tg x + 3 = 0$ и найти количество корней на $[0^0; 360^0]$.

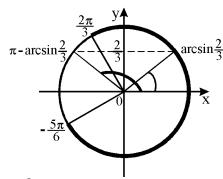
В результате решения получаем tgx = 1 и tgx = 3.

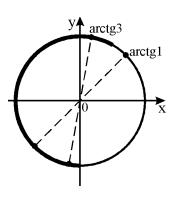
Для нахождения количества корней уравнения нанесём точки, соответствующие этим решениям на единичную окружность. Корни, соответствующие уравнению tgx=1, лежат в первой и третьей четверти и удовлетворяют равенству

 $x_1 = \frac{\pi}{4} + \pi n$. Корни, соответствующие уравнению tgx = 3, также лежат в пер-

вой и третьей четверти и удовлетворяют равенству $x_2 = \arctan 3 + \pi n$. При нанесении точек на окружность учтём, что $\arctan 3 > 60^\circ$, т.к. $\arctan \sqrt{3} = 60^\circ$.

При нахождении количества корней можно не решать двойные неравенства





 $0 \le \frac{\pi}{4} + \pi n \le 2\pi$ и $0 \le arctg 3 \le 2\pi$, а провести следующее рассуждение. Промежуток $[0^0; 360^0]$ соответ-

ствует одному обороту на единичной окружности. Значит, на этот промежуток попадают 4 указанные точки окружности. Поэтому количество корней уравнения равно 4.

Если бы в условии задачи требовалось бы найти количество корней на промежутке $[-360^0; 360^0]$, то ответ был бы 8 корней, т.к. указанный промежуток соответствует двум оборотам на окружности, а значит, каждой из указанных точек окружности будет соответствовать по 2 точки.

Если бы в условии задачи требовалось бы найти количество корней на промежутке $[60^0; 270^0]$, то ответ был бы 3 корня, т.к. данный промежуток соответствует указанной дуге на окружности.

ПРИМЕР. Решить уравнение $\frac{1}{2}\sin 4x = 2\sin x\cos x$ и найти количество корней на $[0; 2\pi]$.

Обратите особое внимание на решение этого уравнения. Будут показаны наиболее часто встречаемые ошибки. Используем формулы двойного угла для преобразования левой части уравнения:

$$\frac{1}{2}\sin 4x = \frac{1}{2} \cdot 2\sin 2x\cos 2x = \sin 2x\cos 2x \quad \text{и для правой части уравнения: } 2\sin x\cos x = \sin 2x \ .$$

Получаем $\sin 2x \cdot \cos 2x = \sin 2x$. Надеюсь, Вы не хотите услышать от меня язвительные комментарии на тему: «Я теряю корни», поэтому Вы не сократите на $\sin 2x$, а перенесёте его в левую часть и вынесете за скобки $\sin 2x \cdot \cos 2x - \sin 2x = 0$.

Тогда $\sin 2x \cdot (\cos 2x - 1) = 0$. Имеем два случая: $\sin 2x = 0$ или $\cos 2x - 1 = 0$.

Решим сначала $\sin 2x = 0$

$$2x = \pi \cdot n; n \in \mathbb{Z}. \Rightarrow x = \frac{\pi \cdot n}{2}; n \in \mathbb{Z}$$

Для отбора корней решим двойное неравенство $0 \le \frac{\pi \cdot n}{2} \le 2 \cdot \pi$

$$0 \le \pi \cdot n \le 4 \cdot \pi \implies 0 \le n \le 4$$

Нам подходят n = 0; 1; 2; 3; 4 - т.е. 5 корней.

Теперь $\cos 2x - 1 = 0$.

$$\cos 2x = 1 \implies 2x = 2 \cdot \pi \cdot n; n \in \mathbb{Z} \implies x = \pi \cdot n; n \in \mathbb{Z}$$

Теперь решим двойное неравенство для нахождения корней, которые удовлетворяют условию

$$0 \le \pi \cdot n \le 2\pi$$
. $\Rightarrow 0 \le n \le 2$

Нам подходят n = 0; 1; 2 - т.е. 3 корня.

Казалось бы, в уравнении 8 корней. Но это ошибка. Корни в первом и втором случае могут совпадать.

После нахождения целых значений п, надо обязательно найти корни х в каждом из случаев.

В первом случае
$$x = \frac{\pi \cdot n}{2}$$
; $n = 0, 1, 2, 3, 4$.

Получаем корни $x = 0; \frac{\pi}{2}; \pi; \frac{3\pi}{2}; 2\pi$.

Во втором случае $x = \pi \cdot n$; n = 0, 1, 2. Получаем корни $x = 0; \pi; 2\pi$.

Мы видим, что корни $x = 0; \pi; 2\pi$ - повторяются в обоих уравнениях, два раза их учитывать не надо.

Итак, в уравнении 5 корней
$$x=0;\frac{\pi}{2};\pi;\frac{3\pi}{2};2\pi$$
 .

Замечание. Иногда ученики неправильно отбирают корни так: в первом случае n=0;1;2;3;4 - т.е. 5 корней, во втором случае n=0;1;2 - т.е. 3 корня, но 0;1;2 - совпадают, поэтому их два раза учитывать не надо. Это бессмысленное рассуждение. **Надо проверять совпадение корней, а не их номеров.**

Кстати, более правильным решением является запись разных букв, обозначающих целые числа в ответах.

B данном случае
$$\,x=\dfrac{\pi\cdot n}{2}\,;\,n\in Z\,$$
 и $\,x=\pi\cdot k;\,k\in Z\,.$

На тестировании это непринципиально, а при решении письменной работы в школе это надо учитывать.

1. Решить уравнение $4\sin^2 2x + 3\sin 2x - 1 = 0$

1)
$$x_1 = \frac{1}{2} \cdot (-1)^n \arcsin \frac{1}{4} + \frac{\pi n}{2}$$
; $x_2 = -\frac{\pi}{4} + \pi k$ 2) $x_1 = (-1)^n \arcsin \frac{1}{8} + \frac{\pi n}{2}$; $x_2 = -\frac{\pi}{4} + \pi k$

2)
$$x_1 = (-1)^n \arcsin \frac{1}{8} + \frac{\pi n}{2}$$
; $x_2 = -\frac{\pi}{4} + \pi k$

3)
$$x_1 = \frac{1}{2} \cdot (-1)^{n+1} \arcsin \frac{1}{4} + \frac{\pi n}{2}$$
; $x_2 = \frac{\pi}{4} + \pi k$ 4) $x_1 = (-1)^n \arcsin \frac{1}{4} + \frac{\pi n}{2}$; $x_2 = -\frac{\pi}{2} + 2\pi k$

4)
$$x_1 = (-1)^n \arcsin \frac{1}{4} + \frac{\pi n}{2}$$
; $x_2 = -\frac{\pi}{2} + 2\pi k$

2. Решить уравнение $3 \cdot \left(\frac{1}{\cos^2 x} - 1 \right) - 2 t g x = 0$

1)
$$x_1 = -\arctan \frac{1}{3} + \pi n$$
; $x_2 = 2\pi k$ 2) $x_1 = \arctan \frac{3}{2} + 2\pi n$; $x_2 = 2\pi k$

2)
$$x_1 = arctg \frac{3}{2} + 2\pi n$$
; $x_2 = 2\pi k$

3)
$$x_1 = \operatorname{arctg} \frac{2}{3} + \pi n$$
; $x_2 = \pi k$

3)
$$x_1 = \operatorname{arctg} \frac{2}{3} + \pi n$$
; $x_2 = \pi k$ 4) $x_1 = \operatorname{arctg} \frac{1}{3} + \frac{\pi n}{2}$ $x_2 = \frac{\pi k}{2}$

3. Решить уравнение $4(\cos^2 x + \cos 2x) + 3\sin(\frac{3\pi}{2} + x) = 2$ и найти количество корней, удовлетворяющих условию $-\frac{\pi}{6} \le x \le \frac{2\pi}{3}$.

1) $x_1 = \pm \arccos\left(\frac{1-\sqrt{33}}{8}\right) + 2\pi n$, $x_2 = \pm \arccos\left(\frac{1+\sqrt{33}}{8}\right) + 2\pi n$, 1 корень.

2) $x_1 = \pm \arccos\left(\frac{1-\sqrt{33}}{8}\right) + 2\pi n$, $x_2 = \pm \arccos\left(\frac{1+\sqrt{33}}{8}\right) + 2\pi n$, 2 корня.

3) $x_1 = \pm \arccos\left(\frac{1-\sqrt{33}}{8}\right) + 2\pi n$, $x_2 = \pm \arccos\left(\frac{1+\sqrt{33}}{8}\right) + 2\pi n$, 3 корня.

4) $x_1 = \pm \arccos\left(\frac{1-\sqrt{33}}{8}\right) + 2\pi n$, $x_2 = \pm \arccos\left(\frac{1+\sqrt{33}}{8}\right) + 2\pi n$, 4 корня.

4. Решить уравнение $\sin^2 x \cdot (24\cos x - 5) + 24\cos^3 x = 0$ и найти количество корней на $[0^0; 360^0]$.

1)
$$x = \pm \arccos \frac{1}{5} + \pi n$$
; 4 корня

2)
$$x = \pm \arccos \frac{1}{5} + 2\pi n$$
; 2 корня.

3)
$$x = \arccos \frac{1}{5} + \pi n; 2 корня$$

4)
$$x = \pm \arccos \frac{4}{5} + 2\pi n$$
; 2 корня

124 ПРОСТЫЕ **УРАВНЕНИЯ ИТОГОВЫЙ ТЕСТ** 1

		HEIMBIN HTOTOBBIN, TECT II
1. Найти решение уравнения sin	$\left(\frac{\pi}{2}(x-3)\right) = 1,$	3 < х < 9 на указанном промежутке.

1) 4, 8.

2) 4, 5. 3) 4, 6.

2. Решить уравнение tg x = $1/\sqrt{3}$ и найти количество корней на указанном промежутке $-\frac{\pi}{3} \le x \le \frac{2 \cdot \pi}{3}$.

1) $\frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 1 корень 2) $\frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 2 корня

3) $\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 2 корня 4) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; 3 корня

3. Решить уравнение $\sin x = -1/2$ и найти количество корней на указанном промежутке $-\frac{2\cdot\pi}{3} \le x \le \frac{4\cdot\pi}{3}$.

1) $-\frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня 2) $-\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; $-\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 2 корня.

 $3) \ -\frac{5\pi}{6} + 2\pi k, \quad k \in \mathbb{Z}; \quad -\frac{\pi}{6} + 2\pi n, \quad n \in \mathbb{Z}; \ 3 \ \text{корня} \ 4) \ -\frac{\pi}{3} + 2\pi k, \quad k \in \mathbb{Z}; \quad -\frac{2\pi}{3} + 2\pi n, \quad n \in \mathbb{Z}; \ 2 \ \text{корня} \, .$

4. Найти решение уравнения $1 + 2\sin\frac{\pi x}{3} = 0$, 2 < x < 4 на указанном промежутке

2) 3,5. 3) 3,6. 4) 3,8.

5. Найти решение уравнения $\cos 2x = -\frac{\sqrt{3}}{2}$, $180^{\circ} < x < 270^{\circ}$ на указанном промежутке

6. Найти решение уравнения $tg2x = \frac{1}{\sqrt{3}}$, $90^{\circ} < x < 180^{\circ}$ на указанном промежутке

7. Решить уравнение $\sqrt{3} tg \left(3x + \frac{\pi}{4} \right) = 1$ и найти сумму корней, удовлетворяющих условию

 $-10^{\circ} < \mathrm{x} < 90^{\circ}$. 1) 30^{0} . 2) 40^{0} . 3) 50^{0} . 4) 60^{0} . 8. Решить уравнение $\cot \mathrm{x} = 1/\sqrt{3}$ и найти количество корней на указанном промежутке $-\frac{2\cdot\pi}{3}\leq x\leq \frac{4\cdot\pi}{3}.$

1) $\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$; 2 корня

2) $\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 4 корня

3) $\frac{\pi}{6} + 2\pi k$, $k \in \mathbb{Z}$; 3корня 4) $\frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 3корня

9. Решить уравнение $tg^2x = \frac{1}{3}$ и найти количество корней, удовлетворяющих условию $-\frac{\pi}{4} \le x \le \frac{5 \cdot \pi}{3}$.

1) $\pm \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; 4 корня

2) $\pm \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 4 корня

3) $\pm \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; 3 корня 4) $\pm \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 3 корня

10. Решить уравнение $1-4\sin^2\left(5x-\frac{\pi}{3}\right)=0$ и найти сумму корней, удовлетворяющих условию

11. Решить уравнение $6\cos^2 x - 5\sin x + 5 = 0$ и найти количество корней, удовлетворяющих условию

$$-2\pi < x < 2\pi$$

1)
$$x = \frac{\pi}{2} + 2\pi n$$
, 2 корня

1)
$$x = \frac{\pi}{2} + 2\pi n$$
, 2 корня. 2) $x = \frac{\pi}{2} + 2\pi n$, 1 корень.

3)
$$x = \frac{\pi}{2} + \pi n$$
, 3 корня.

3)
$$x = \frac{\pi}{2} + \pi n$$
, 3 корня. 4) $x = -\frac{\pi}{2} + 2\pi n$, 2 корня.

12. Решить уравнение $8\cos^4 x = 11\cos 2x - 1$ и найти количество корней на $[0^0; 300^0]$.

1)
$$x = \frac{\pi}{6} + \pi n; 2 корня$$

2)
$$x = \pm \frac{\pi}{3} + \pi n; 3 корня$$

3)
$$x = \pm \frac{\pi}{6} + \pi n; 3 корня.$$
 4) $x = \pm \frac{\pi}{6} + 2\pi n; 2 корня$

4)
$$x = \pm \frac{\pi}{6} + 2\pi n; 2 корня$$

13. Решить уравнение $tg^2x - (\sqrt{3} + 1)tgx + \sqrt{3} = 0$ и найти наименьшее решение на $(0^0, 90^0)$. 1) 15^0 . 2) 30^0 . 3) 45^0 . 4) 60^0 .

1)
$$15^0$$
.

$$2) 30^{0}$$
.

$$3) 45^{0}$$
.

4)
$$60^{\circ}$$
.

14. Решить уравнение $\cos^2 x + \sin x \cos x = 1$ и найти количество корней на промежутке $[0;\pi]$.

1)
$$2\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 3 корня 2) πk ; $\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 3 корня

2)
$$\pi k$$
; $\frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 3 корня

3)
$$\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 4 корня

3)
$$\pi k$$
; $\pm \frac{\pi}{4} + \pi n$, $k, n \in \mathbb{Z}$; 4 корня 4) $2\pi k$; $\frac{\pi}{4} + 2\pi n$, $k, n \in \mathbb{Z}$; 3 корня

15. Решить уравнение $5\sin^2 x = 2-\cos^2 x$ и найти количество корней на промежутке $[0;\pi]$.

1)
$$\frac{\pi}{6} + \pi k$$
, $k \in \mathbb{Z}$; 1 корень

2)
$$\pm \frac{\pi}{6} + \pi k$$
, $k \in \mathbb{Z}$; 2 корня

3)
$$\pm \frac{\pi}{3} + \pi k$$
, $k \in \mathbb{Z}$; 2 корня

4)
$$\pm \frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; 1 корень

16. Решить уравнение $7 + 4\sin x \cos x + \frac{3}{\cos(90^{\circ} - 2x)} = 0$ и найти число корней на $[0^{\circ}; 360^{\circ}]$.

17. Решить уравнение $1+\sin\left(\frac{\pi}{2}+\frac{x}{2}\right)=\cos(21\pi-x)$ и найти сумму корней, удовлетворяющих условию

$$-2\pi < x < 4\pi. \quad 1) \quad x_1 = \pi + \pi n, \quad x_2 = \pm \frac{4\pi}{3} + 2\pi n. \quad \frac{13\pi}{3}$$

$$2) \quad x_1 = \frac{\pi}{2} + 2\pi n, \quad x_2 = \pm \frac{2\pi}{3} + 4\pi n. \quad \frac{11\pi}{6}$$

2)
$$x_1 = \frac{\pi}{2} + 2\pi n$$
, $x_2 = \pm \frac{2\pi}{3} + 4\pi n$. $\frac{11\pi}{6}$

3)
$$x_1 = \pi + 2\pi n$$
, $x_2 = \pm \frac{4\pi}{3} + 4\pi n$. $\frac{17\pi}{3}$ 4) $x_1 = \pi + \pi n$, $x_2 = \pm \frac{2\pi}{3} + 4\pi n$. $\frac{15\pi}{4}$

4)
$$x_1 = \pi + \pi n$$
, $x_2 = \pm \frac{2\pi}{3} + 4\pi n$. $\frac{15\pi}{4}$

18. Решить уравнение $3\sin^2 x - 3\cos 2x - 12\sin x + 7 = 0$ и найти количество корней, удовлетворяющих условию $-\frac{5\pi}{6} \le x \le \frac{2\pi}{3}$. 1) $x = (-1)^n \arcsin \frac{2}{3} + \pi n$, 1 корень. 2) $x = \pm \arcsin \frac{2}{3} + \pi n$, 2 kop-

3) $x = (-1)^n \arcsin \frac{1}{2} + \pi n$, 2 корня.

4)
$$x = (-1)^n \arcsin \frac{2}{3} + 2\pi n$$
, 1 корень.

19. Решить уравнение: $\sin^3 x = 2\sin 2x$.

1)
$$x_1 = 2\pi n$$
, $x_2 = \pm \arccos(\sqrt{5} - 2) + \pi n$

2)
$$x_1 = \pi n$$
, $x_2 = \pm \arccos(\sqrt{5} - 2) + 2\pi n$.
4) $x_1 = 2\pi n$, $x_2 = \pm \arccos(\sqrt{5} - 2) + 2\pi n$

3)
$$x_1 = \frac{\pi n}{2}$$
, $x_2 = \pm \arccos(\sqrt{5} - 2) + \pi n$

4)
$$x_1 = 2\pi n$$
, $x_2 = \pm \arccos(\sqrt{5} - 2) + 2\pi n$